Scaling Models for Thermodynamic Properties of HFC 134a and HFC 143a

on the Coexistence Curve

- E. Ustjuzhanin¹, J. Magee², J. Yata³, B. Reutov¹, B. Grigoriev¹, K. Jakovenko¹
- 1. Moscow Power Engineering Institute, 111250 Moscow, Krasnokazarmennaja st., 14, E-mail: ustmei@itf.mpei.ac.ru, Russia
- 2. National Institute of Standards and Technology, Boulder, Colorado, U.S.A.
- 3. Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Abstract

The chief aim of the work was to obtain scaling forms for the properties F (the densities ρ_l and ρ_g , the saturation pressure P_s , dP_s/dT and the specific enthalpy of vaporization h) of HFC 134a and HFC 143a along the coexistence curve (CC) including a wide region around the critical point. A methodical part dealt with a general equation of a property F (ρ_l , ρ_g , P_s ,) that had a scaling part F_{scal} and a regular one F_r . The form of F_{scal} followed to the scaling theory (ST) and depended on the relative distance τ from T_c , critical exponents (α , β , (Δ_i)) and amplitudes, (B_{si}), (B_{di}).

Experimental data on P_s , $\rho_h \rho_g$ and h were analyzed. Reliable results were involved in the input data sets those covered the region from the triple point temperature T_{tr} to T_c . Among them there were new results of Magee [1,2] and Yata [3] for HFC134a. Analogous new data [4-5] were chosen for the input data sets prepared for HFC 143a. New data are placed in the interval $0.005 < \tau < 0.25$. A statistical routine and some criterions were elaborated for the task. The form of scaling function $\psi_{l,g}$ was used to analyze $\rho_l(T)$ and $\rho_g(T)$. A system of relations $P_s(T)$, $\rho_l(T)$, $\rho_g(T)$ and h(T) was produced and proposed for joint calculation of $P_s(T)$, $P_s(T)$, at $P_s(T)$ and $P_s(T)$, $P_s(T)$ and $P_s(T)$, $P_s(T)$ and $P_s(T)$, $P_s(T)$, $P_s(T)$ and $P_s(T)$, $P_s($

The relations represented reliable measured points including new data in limits of experimental errors. They can be helpful to calculate properties in a wide region of the critical point, $0.005 < \tau < 0.1$ were known tables [7 - 10 a. o.] report only a few data.

Keywords: HFC 134a; HFC 143a; Thermodynamic properties; Scaling equation; Saturation pressure; Density of liquid, Density of vapor; Coexisting curve.

1. Introduction

A methodical part of the investigation deals with a general equation of a property F that has the structure

$$F(T) = F_{scal}(\tau, \beta, \alpha, (\Delta_i), (B_i)) + F_r(\tau), \tag{1.1}$$

where F_{scal} – a scaling part, F_r – a regular part.

 F_{scal} has the form that follows to ST, is discussed in [11,12] and includes three addends in a general case. F_{scal} of the order parameter f_s and the diameter of CC f_d looks like

$$f_s = (\rho_l - \rho_g)(2\rho_c)^{-1} = B_{s0}\tau^{\beta} + B_{s1}\tau^{\beta + \Delta 1} + B_{s2}\tau^{\beta + \Delta 2}, \tag{1.2}$$

$$f_d = (\rho_l + \rho_g)(2\rho_c)^{-1} - 1 = B_{d0}\tau^{1-\alpha} + B_{d1}\tau^{1-\alpha+\Delta 1} + B_{d2}\tau^{1-\alpha+\Delta 2}.$$
(1.3)

The first addend in (1.2) (1.3) represents the asymptotic component, the second and the third terms give non asymptotic components (the first and the second correction terms with correction exponents Δ_1 and Δ_2 .

Analytic $\rho_l(T)$ and $\rho_g(T)$ equations can be determined with the help of known (1.2,1.3) as

$$\rho_l = (f_d + f_s + 1) \, \rho_c \,, \qquad \rho_g = (f_d - f_s + 1) \, \rho_c \,.$$
 (1.4)

Equations (1.2,1.3) are named as Model 1 that consists of F_{scal} entirely. Its approximation quality is characterized by individual and RMS deviations of experimental ($\rho_{g\ exp\ k}$, $\rho_{l\ exp\ k}$) values from those calculated with equations (1.4)

$$\delta \rho_{gk} = 100 \; (\rho_{g \; exp \; k} - \rho_{gk}) / \; \rho_{gk} \;, \qquad S_g = (\Sigma \delta \rho_{gk}^2 / N)^{0.5},$$

$$\delta \rho_{li} = 100 \; (\rho_{l \; exp \; k} - \rho_{lk}) / \; \rho_{lk} \;, \qquad S_l = (\Sigma \delta \rho_{lk}^2 / N)^{0.5}, \qquad (1.5)$$

Model 1 can be considered as $Y = (f_s, f_d)$ that includes critical characteristics $D = (\rho_c, T_c, \alpha, \beta, (\Delta_i))$ and coefficients $C = ((B_{si}), (B_{di}))$. Values of C are to be determined by an approximation of the input data set (Y_{exp}, τ_k) . If D are considered as the parameters fixed and known (taken from literature sources) then $Y = f(D, C, \tau)$ is a linear function of C. In the case it is possible to calculate C using a weighted least-squares analysis (LSQA) and a single criterion – a minim of the functional $\Phi(C,D)$

$$\Phi(C,D) = \sum_{k=1}^{N} w_k (Y_{exp \ k} - f(D,C,\tau_k))^2 / N = min.$$
 (1.6)

Routine 1 is elaborated for C calculation and has the following steps: i) to consider D as the parameters fixed and to take from literature sources; ii) to form a sum of squares, $\Phi(C,D)$, for the input data set; iii) to calculate a realization C, that is numerical values of C, using a weighted least-squares analysis (LSQA) and a single criterion – a minim of $\Phi(C,D)$; iiii) to estimate a quality of the approximation that is to calculate individual and RMS deviations.

Model 1 let us represent experimental data in a working interval $\Delta \tau_{\rm w} = 0.15$ of T_c ($T_c > T$ $> T_w$, $\Delta \tau_{\rm w} = 1 - T_w / T_c$) for different substances [11,12,13]. Deviations, S_g , S_l , were small and no systematic deviations were realized. Our practice showed if T_w decreases and $\Delta \tau_{\rm w} > 0.15$ then RMS deviations, S_g , S_l , increase and remarkable systematic errors appear.

To represent $\rho_b \rho_g$, T – data in $\Delta \tau_w > 0.15$ we have elaborated a combined model – Model 2 [12,13] that includes F_{scal} and additional $F_r(\tau)$ in comparison with Model 1

$$f_s = B_{s0}\tau^{\beta} + B_{s1}\tau^{\beta+\Delta 1} + B_{s2}\tau^{\beta+\Delta 2} + B_{s3}\tau^2 + B_{s4}\tau^3, \tag{1.7}$$

$$f_d = B_{d0} \tau^{1-\alpha} + B_{d1} \tau^{1-\alpha+\Delta 1} + B_{d2} \tau^{1-\alpha+\Delta 2} + B_{d3} \tau^2 + B_{d4} \tau^3. \tag{1.8}$$

 $F_r(\tau)$ is involved with the aim to reduce systematic deviations mentioned for Model 1 under $\tau_{\rm w} > 0.15$. Model 2 is to have the following characteristics: 1) it approximates $\rho_b \rho_g$, T – data in $\Delta \tau_{\rm w} > 0.15$ with acceptable deviations, S_g , S_l , 2) at the same time its scaling part delivers acceptable deviations, S_g , S_l , for points in $\Delta \tau_{\rm w} = 0.15$ when F_{scal} is considered as Model 1 and used to calculate deviations of $\rho_b \rho_g$, T – data from F_{scal} in $\Delta \tau_{\rm w} = 0.15$.

One more property is considered in ST and involved in the work: the scaling function $\psi_{l,g}$ that can be expressed in the form

$$\psi_{l,g} = |(\rho_{l,g} - \rho_c)(2\rho_c \tau^{\beta})^{-1}| = |\pm B_{s0} + B_{d0} \tau^{1 - \alpha - \beta} \pm B_{s1} \tau^{\Delta 1 - \beta} + B_{d1} \tau^{1 - \alpha + \Delta 1 - \beta} + \dots|, (1.9)$$

where the upper (plus) sign of terms corresponds to the liquid branch (l), the lower (minus) corresponds to the vapor branch (g) of $\psi_{l,g}$.

The scaling part of the equation $P_s(T)$ is written as

$$ln(P_s/P_c)_{scal} = B_{pi}\tau^{2-\alpha} + B_{Pi+1}\tau^{2-\alpha+\Delta l}.$$
 (1.10)

The form (1.8) follows to the next degree law in the asymptotic region $\Delta \tau_w$

$$dP_s^2/dT^2 \sim \tau^{-\alpha}. \tag{1.11}$$

Several data sources and criterions are used in the work to establish the models and to determine critical exponents and parameters and amplitudes of the models.

2. Density: models, criterions and routines

A preliminary treaty of experimental and tabulated $\rho_b(T)$ and $\rho_g(T)$ –data for HFC 134a (\approx 400 points) let us select an input $\rho_b\rho_g$, T – data set that consists of \approx 200 points including data from [2,3,14-17] those were not used in the known correlations. They cover a region from T_{tr} = 169.85 to T_c ($\Delta \tau_w \approx 0.5$). It is important to remark that the investigation [3] has given $\rho_b\rho_g$, T – values those are got with a refractive index technique in the interval $\Delta T_w \approx 5$ K where a big scattering ($\pm 4\%$) of points existed. The results [2] gave an accurate information in $\Delta \tau_w \approx 0.5$ including data near T_{tr} . An analog input $\rho_b\rho_g$, T – data set is formed for HFC 143a including data [4,5] those are placed in $\Delta \tau_w = 0.25$.

Routine 1 gives an opportunity to examine a group of realizations $(Y = f(D_j, C_j, \tau), j = 1...K)$. Criterion (1.6) shows that $\Phi(C,D)$ $S_{l,g}(D)$ are functions of parameters D. If Routine 1 is used at the first time then the following numerical values appear parameters, $D = D_1$, a realization, $C = C_1$, RMS deviations, $S_{l,g}(D_1)$. If one of the parameters D_1 is shifted (for example ρ_c can be shifted on $\Delta \rho_c$ in limits of an experimental estimation $\pm \Delta_{\rho c}$) then Routine 1 can be used at the second time and the second set, $D_2, C_2, S_{l,g}(D_2)$, can be got. Many numerical variants (realizations (C_j)) of Models 1,2 and according deviation sets $(S_{l,g}(D_j))$ were got, among them there were such numerical dependences as $S_{l,g}(\rho_c)$, $S_{l,g}(T_c)$, $S_{l,g}(\beta)$ in a wide region of S_l^{min} and

 S_g^{min} . Our analyses estimated some general features of the realisations: i) values of S_g and S_l did not coincide $(S_l < S_g)$, the minimal values were found between them $(S_l^{min} = 0.22\%)$ and $S_g^{min} = 0.65\%$ for HFC 134a points related to $\Delta \tau_w = 0.25$, ii) the leading amplitudes (B_{s0}, B_{d0}) deviated greatly from theoretical values $(B_{s0} \approx 2)$ and $(S_{d0} < 1)$ and from middle calculated values (B_{s0}, B_{d0}) , iii) it was impossible to find a variant C_j that delivered $S_l = S_l^{min}$ and $S_g = S_g^{min}$ at once. The last circumstance was one of the reasons to look for an optimal Models $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once. The last circumstance was one of the reasons to look for an optimal Models $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and optimal realization $S_l = S_l^{min}$ and optimal realization $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and optimal realization $S_l = S_l^{min}$ and $S_l = S_l^{min}$ and optimal realization $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S_l^{min}$ and $S_l = S_l^{min}$ at once $S_l = S$

$$S_l(D_j) - S_l^{min} < \varepsilon_1, \qquad S_g(D_j) - S_g^{min} < \varepsilon_2,$$
 (2.1)

where ε_1 and ε_2 – some limits.

Our practice and analysis of a realizations, (C_j) , have shown that more criterions have to be involved for the purpose to choose an optimal variant from realizations (C_j) those satisfied criterions (2.1).

Investigations [1,12,13] estimated that the scaling function $\psi_{l,g}$ can be used as an additional criterion. $\psi_{l,g}$ is written in a narrow interval $\tau_{\rm w} \approx 0.01$ as two terms expression that includes only leading addends with the asymptotic exponents

$$\psi_{l,g} \approx |\pm B_{s0} + B_{d0}\tau^{l-\alpha-\beta}|. \tag{2.4}$$

A numerical form (2.4) of $\psi_{l,g}$ was found and analysed for several liquids (H₂O,Ne,N₂,HFC 134a, HFC 143a a. o.). Due to (2.4) the next features of variants ($Y = f(D_j, C_j, \tau)$): i) $\psi_{l,g}$ is symmetric to the amplitude B_{s0} for liquid and vapour branches, ii) the plot of $\psi_{l,g}$ versus $\tau^{1-\alpha-\beta}$ is liner and converge symmetrically to B_{s0} , iii) corresponding Model 0 as $Y = f(D, C = B_{s0}, B_{d0}, \tau)$ can be built, the asymptotic Model 0 are in a satisfied agreement with experimental points related to

 $\tau_{\rm w} \approx 0.01$ and deviations, $S_b S_g$, from Model 0 are close to criterions (2.3). An illustration of $\psi_{l,g}$ for HFC 134a is given in Fig. 1.

Two methods of D chose were examined for the task. Due to the first one D components are taken as theoretical or experimental values and not varied during a treaty of the input data set. For example the exponents are taken in [6,16,17] as theoretical data β =0.325, α =0.1085 and Δ = 0.5. We have used the way for (Δ_i) determination and chosen $\Delta_1 = \Delta = 0.5$ and $\Delta_2 = 2\Delta$ as theoretical values. The second method [11,12,13] considers $D = (\rho_c, T_c, \alpha, \beta, B_{s0}, B_{d0})$ as fixed parameters but D is known in a region of possible deviations $(\pm \Delta D)$. The method let us shift D in the limits $(\pm \Delta D)$ corresponding to some criterions with the aim to reach a satisfy correlation of Models 1,2 with the input data set. We underline that leading amplitudes, B_{s0}, B_{d0} , are also included in D and they do not take part in LSQA when amplitudes C are determined. This schema has been accepted in the work.

The middle value of D components and a region of possible deviation $(\pm \Delta_{\rho c}, \pm \Delta_{Tc}, \pm \Delta_{\beta} \text{ a.o.})$ were found previously. The start values of the exponents (α, β) were chosen as $\alpha = 0.1085$ and $\beta = 0.325$. The characteristics were combined in a group $D_1 = (\rho_c, T_c, \alpha, \beta, \Delta, B_{s0}, B_{d0})$ as a start data.

Routine 2 was elaborated using criterions (2.3,2.4). It consisted of several steps: i) to take D_1 as start fixed parameters, ii) to calculate the realization C_1 employing weighted LSQA, iii) to determine the criterions (S_l , S_g , $\psi_{l,g}$) and to analyse them; if the analysis showed that criterions (S_l , S_g , $\psi_{l,g}$) satisfied conditions (2.3,2.4) then the routine was to finish. On opposite site, a new fixed parameter (for example, it was ρ_c) was to be chosen (ρ_c was shifted on 0.1 $\Delta_{\rho c}$), D_2 was formed and treaty was continued (steps ii,iii) to get next realisation C_2 .

Routine 2 let us get Models 1,2 those had effective parameters, D_{opt} , C_{opt} , and were agree with conditions (2.3,2.4). The routine was used to build Model 2 approximated $\rho_h \rho_g$, T –points of HFC 134a in $\tau_w \approx 0.5$. The limits, ε_1 , ε_2 , were determined as $\varepsilon_1 = 0.1\%$ and $\varepsilon_2 = 0.2\%$. Numerical

parameters of Model 2 are placed in table 1. Model 2 was fitted to the input data set with acceptable accuracy in $\tau_w \approx 0.2$ (gas phase) and $\tau_w \approx 0.5$ (liquid phase).

Table 1. Parameters of Model 2 for HFC 134a.

$ ho_c$ / kg	g/m^3 T_c/K	α	$oldsymbol{eta}$	Δ
510.	.5 374.105	0.1509	0.34942	0.5
B_{s0}	B_{s1}	B_{s2}	B_{s3}	B_{s4}
2.11	-0.044561	-0.426163	-0.039283	0.474428
B_{d0}	B_{d1}	B_{d2}	B_{d3}	B_{d4}
0.525	0.853378	-0.42822	0.029534	-0.008737

Table 2. Parameters of Model 2 for HFC 143a.

	ρ_c / kg/m ³	T_c/K	α	$oldsymbol{eta}$	Δ
	430.66	345.815	0.22	0.3515	0.5
B_{s0})	B_{s1}	B_{s2}	$B_{s\beta}$	B_{s4}
2.07	7	1.793437	-1.364958	+0.199057	0.730117
B_{d0})	B_{d1}	B_{d2}	B_{d3}	B_{d4}
0.22	3	0.084649	-0.5101183	+0.210395	0.717498

3. Saturation pressure and specific heat of vaporization

An expression of $P_s(T)$ was chosen in the form:

$$ln(P_{s}/P_{c}) = B_{p0} (1 - 1/t) + B_{p1}\tau + B_{p2}\tau^{2-\alpha} + B_{p3}\tau^{2-\alpha+\Delta} + B_{p4}\tau^{3} + B_{p5}\tau^{5},$$
(3.1)

where, (B_{pi}) - adjustable coefficients.

Values of $B_p(B_{Pi})$ were determined under a statistical fitting of P_s , T –data. Approximation criterions were connected with deviations of experimental data from equation (3.1) and expressed as

$$\delta P_i = 100 (P_{exp_i} - P_i) / P_i, \qquad S_p = (\Sigma \delta P_i^2 / N)^{0.5}, \qquad (3.2)$$

where $P_{exp i}$, P_i – experimental and calculated values of P in i – point, S_p - a relative RMS deviation, N number of points considered.

One more criterion was taken into consideration – a relative RMS deviation (S_h) of experimental h,T – data. An analysis of experimental and tabulated P_s,T –data let us select an input data set (\approx 100 points including new data [2,14,15,18]. The input data set covered a region ΔT_w =205 K from $T_{tr}=169.85$ to T_c .

A routine of B_p determination was elaborated. As in the case of the density treaty, it consisted of analogous steps: i) to take D_1 ($P_c, T_c, \alpha, \Delta, B_{p0}$) as start fixed parameters, ii) to calculate the realization (B_{pi})₁ employing a minimization of $\Phi(C, Y_{exp}, Y_i, \tau_l, w_i)$), where $Y = ln(P_s/P_c)$, and iii) to determine criterions (S_P, S_h) and to analyse them. The next step is analogous to the step that takes place in Routine 2. Values of (B_{gi}) were calculated and shown in table 3.

Table 3. Parameters of saturation pressure equation for HFC 134a

 P_c /MPa T_c/K B_{D4} α B_{p0} B_{pl} B_{n2} B_{n3} B_{p5} Δ 4.0502 374.105 0.1509 0.5 9.5 1.90843 7.63554 -11.35781 11.72233 -10.83595 **Table 4**. Parameters of saturation pressure equation for HFC 143a

$$P_{c}$$
/MPa T_{c} /K α Δ B_{p0} B_{p1} B_{p2} B_{p3} B_{p4} B_{p5} 3.761 345.815 0.22 0.5 8.50 1.17781 5.67519 -7.64488 8.55837 -9.18576

The specific enthalpy of vaporization was represented with a known formula

$$h = \frac{dP_s}{dT}T\left(\frac{1}{\rho_s} - \frac{1}{\rho_t}\right) \tag{3.3}$$

where dP_s/dT – the derivative determined with the help of (3.1), ρ_g , ρ_l –determined with the help of (1.7,1.8).

4. Conclusion

The analysis of realizations, an optimal variant of Model 2 and results of a comparison with literature data allows us to make an output that the scaling model (1.7,1.8) can be useful to approximate experimental $\rho_h \rho_g$ – data on a line of phase equilibrium including a broad

neighborhood of the critical point. Numerical variants of Model 2 for HFC134a and HFC143a can improve the known reference data [7 - 10] in the region $0.005 < \tau < 0.05$ were known tables [7 - 10 a. o.] report only a few data. The equations, $\rho_l(T)$, $\rho_g(T)$ a. o., used effective values of parameters, T_c , ρ_c , α , β , B_{s0} , B_{d0} , determined with the help of the routines elaborated.

 $P_s(T)$ equation (3.1) represents experimental data with low errors. RMS deviation of the input data set S_p for HFC 134a is determine as $S_p = 0.04\%$. Deviations of P_s, T – data [2] for HFC 134a are placed in the limits $\delta P = \pm 0.08\%$ in the interval 169.85...250 K. S_p of data [14,15] is determined as $S_p = 0.72\%$. Remarkable deviations, $\delta P = -4.2 - 7.4\%$, is related to the interval 169,85...190 K, at higher T the points [14,15] have deviations $\delta P = -0.23...0.32\%$. A satisfied agreement is got for data (Goodwin at al, 1993, $\delta P = -0.02 - 0.06\%$, Baehr at al, 1991, $\delta P = -0.02 - 0.03\%$.

Acknowledgments. The Russian Fund of Base Researches supports the work.

List of symbols

T = temperature

P = pressure

 ρ = density

 P_s = saturated pressure

g,l,c = indexes to mark the vapor and liquid phases on CC and a value in the critical point

 α , β , (Δ_i) = critical exponents

 $\tau = 1 - T/T_c$ = relative distance of temperature from T_c ,

 $(B_{si}), (B_{di}), (B_{pi}) = amplitudes$

 $\delta \rho_{gk}$, $\delta \rho_{lk}$ = relative deviations of the vapour and liquid densities in k – point

 $\rho_{g exp k}, \rho_{l exp k} =$ experimental values of the densities

 ρ_{gk} , ρ_{lk} = values of the vapour and liquid densities calculated with (1.4)

N = the number of points in the input data set

 S_g , S_l = relative RMS deviations of vapour and liquid densities.

 w_k = weight coefficient for k – point

References

- Magee J.W., Isochoric (p-v-T) Measurements for Compressed 1,1,1,2-Tetrafluoroethane (R134a), in Proc. of A Symposium Honoring Riki Kobayashi's Ongoing Career, March 18, 1995, Houston, Texas (1996) 23-40.
- 2. H.A Duarte-Garza, Magee, J.W Int. J. Thermophysics 18, 1 (1997) 173-193.
- 3. J. Yata, in Proc. of the 1st Workshop on thermochemical, thermodynamic and transport properties of halogenated hydrocarbons and mixtures, (Pisa, Italy), (1999) 120-124.
- 4. Magee J.W., Duarte-Garza H.A., 1998, Int. J. Refrig. v. 18, N 1, 173-193
- 5. Duarte-Garza H A. Magee J W, 1999, Int. J. Refrig. v. 20, N 5, pp. 1467-1481
- 6. J. Yata, Hori M., Kohno K., Minamiyama T., 1997, High Temperatures High Pressures, 17: 65
- 7. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data, vol. 23 (1994) 657-72.
- 8. A.V. Dobrokhotov, E.E. Ustjuzhanin, B.F. Reutov, High Temperature-High Pressure, vol. 3, (1999), 375 380.
- 9. Sato H., Y. Higashi, M. Okada, Y. Takaishi, N. Kagawa, M. Fukushima. 1994, Japanese Association of Refrigeration. Thermodynamic tables, Vol. 1 «HFCs and HCFCs» (Tokyo, JAR).
- 10. E. W. Lemmon, Jackobsen R. T., J. Phys. Chem. Ref. Data, Vol.29, No. 4 (2000) 521 552
- 11. E.T. Shimanskaya, Yu.I. Shimansky and A.V. Oleinikova, Int. J. Thermophys. 17, (1996) 641 649.
- 12. E.E. Ustjuzhanin, Reutov B.F., Kusubov K.B. In Proc. of Fourteenth Symposium on Thermophysical Properties, (Boulder, Colorado, USA, June 25-30) (2000).
- 13. E.E. Ustjuzhanin, J. Yata, B. Reutov, B. Grigoriev, J. Magee In Proc. of 16-th European Conference on Thermophysical Properties (Imperial College, London, 1-4 Sept) (2002).
 - 14. W. Blanke, Klingenberg G, Weiss R., Int. J. Thermophys. <u>16</u>, (1995) 1143-1153.
 - 15. W. Blanke, Weiss R., in PTB Bericht, (Braunschweig, Germany, Februar), (1996) 1-25.
 - 16. Y. Higashi, Int. J. Refrig., 17 (1995) 524-531.
 - 17. H. Aoyama, G. Kishizava, H. Sato, K. Watanabe, J. Chem. Eng. Data, 41 (1996) 1046-1051.
 - V.Z. Geller, V. Sishtla, J.J. Brasz, In Proc. of Thirteenth Symposium on Thermophysical Properties, (Boulder, USA) (1997).
 - W. Blanke, G. Klingenberg, F. Weber, In Proc. of Thirteenth Symposium on Thermophysical Properties, (Boulder, USA) (1997).
 - 20. E.T. Shimanskaya, Yu.I. Shimansky and A.V. Oleinikova, Int. J. Thermophys. 17 (1996) 641 649.

Fig. 1. The scaling functions $\psi_{l,g}$ of HFC 134a. Values are determined from 1) the experimental data, 2) Models 0,2; Bs0 – leading amplitude B_{s0} ; relative temperature – $\tau^{1-\alpha-\beta} = (1 - T/T_c)^{1-\alpha-\beta}$